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Abstract: We present a molecular dynamics (MD) simulation study of the folding thermodynamics of the
three-strandedâ-sheet protein Betanova. The protein and solvent are explicitly described by employing all
atom models. An umbrella sampling technique was employed to probe thermodynamically relevant states at
different stages of folding. A database for the sampling was generated by conducting four high-temperature
simulations. The initial conditions for the umbrella sampling were selected from this database of structures by
employing hierarchical clustering. Sampling of conformational space was then carried out at 275 K and the
generated data were combined with the weighted histogram method to produce the two-dimensional folding
free energy landscape. We found that the folding of the protein Betanova occurs in two collapse stages. The
first collapse brings the protein into a basin that contains various structures differing in their size and elements
of secondary structure. At the transition state from this basin of collapsed states to the native basin, the protein
adopts a native-like fold and size and forms≈60% of native contacts. Thus the formation of native-like structure
is concurrent with the secondary collapse. The overall stability of protein Betanova is found to be about 1
kcal/mol, in agreement with the experimental estimate. We found that the native side chain contacts are the
primary factor in driving Betanova folding and stabilizing its native three-strandedâ-sheet conformation. By
contrast, hydrogen bonding is found to play a minor role in the folding of Betanova. Solvent is observed to be
present in the protein core until late in folding.

1. Introduction

Understanding the mechanism of protein folding is extremely
important for predicting its three-dimensional conformation
under physiological conditions. Much work has been done in
both experiment1,2 and theory3-10 to elucidate folding mecha-
nisms. According to the modern view, protein folding is
regarded as a gradual descent down the folding funnel, whose
major features are the local minima which could transiently trap
the protein in misfolded states (the landscape roughness) and
the overall downhill slope toward the native state. A key notion
of this theory is that in all but the final stages of folding there
exists an ensemble of structures and, consequently, that protein
folding occurs via multiple pathways.10

Insights into the mechanism of protein folding and the con-
nection between experiment and theory are provided by numeric
simulations. However, due to the size of proteins and the time
scale on which folding occurs, its direct study is prohibitive
and different approaches have been invented to circumvent this

problem. Various minimalist models5,11-17 which use a reduced
(minimal) protein description and effective interaction potentials
have been employed in one approach. In these models the
protein is envisioned as a series of beads occupying lattice
sites5,11,14,16or embedded in a continuum12,13,15-17 (off-lattice
models). Although the minimalist models oversimplify the
protein structure and the interaction potential, they have been
successful in reproducing such essential aspects of protein
folding as the existence of the unique native state and coopera-
tive folding.5 Such models continue to be instrumental in
establishing possible scenarios for protein folding.7,10

Another approach is all-atom molecular dynamics simulation
in explicit solvent. Since the folding takes place on a very large
time scale, early research in this area was mainly focused on
protein unfolding,18-24 which can be accelerated by conducting
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the simulation at high temperature, extreme pH, or in the
presence of denaturant. Reviews of papers on protein unfolding
and what can be concluded from such studies are given in refs
4, 8, 25, and 26. In addition, several papers have recently been
published in which direct protein folding has been explored.27-31

Both unfolding and direct folding studies require multiple MD
runs of very long duration and this requirement sets a limit to
their utility. Also, the conformational space sampled in the
protein unfolding simulations could differ from that of the
protein under physiological conditions.

Alternative to studying the kinetics of folding, all-atom
molecular dynamics simulation in explicit solvent can be used
to map out the folding free energy landscape along various
coordinates (radius of gyration, amount of secondary structure,
etc.). For example, this approach was employed to study the
folding free energy landscape for the three-helix bundle fragment
B of Staphylococcalprotein A,32,33segment B1 ofStreptococcal
protein G (GB1)34,35and major cold shock protein A (CspA).36

The folding coordinates used in these studies included the radius
of gyration and the fraction of native contacts. Comparison of
these studies reveals that the topology of the protein native state
influences the folding mechanism. In particular, in protein A,
which is an all-R protein, the formation of tertiary (native)
structure occurs concurrently with the formation of the second-
ary structure and its free energy folding landscape is close to a
diagonal shape. In contrast, for the mixedR/â protein GB1, the
collapse, accompanied by the formation of≈35% of the native
structure, occurs first and is followed by evolution toward the
native state without significant change in size. Similar behavior
is seen for CspA. We note that the collapsed states of these
proteins have a native-like topology and that their folding surface
is close to an L shape.

The aim of the present work is to study, by all-atom MD
simulations, the folding free energy landscape for a designed
all-â protein and relate it to the previously studied cases of
“natural” all-R and mixedR/â proteins. As a model for our study
we have chosen the designed 20-amino acid three-stranded
â-sheet protein Betanova.37 The native structure of this protein
was determined by NMR spectroscopy and it is depicted in
Figure 1. It contains two turns (Asn7-Gly8 and Asn13-Gly14)
and threeâ-strands (â1, â2, andâ3).

The thermodynamics and kinetics of Betanova folding were
determined via thermal and chemical denaturation monitored
by CD and fluorescence spectroscopies, respectively. It was
found that Betanova exhibits cooperative two-state folding-

unfolding behavior and that its thermodynamic stability is
around 0.6-0.7 kcal/mol at 278 K. Due to its marginal stability
this designed protein represents a challenge for MD study.

In what follows we describe models and methods employed
in this study and present our findings on the thermodynamics
and mechanism of folding of the designed protein Betanova.

2. Methods

In this section we briefly outline the methodology used for the
sampling of the folding free energy landscape of protein Betanova.
We follow the techniques developed in this group from previous studies
and provide only a sketch of the methods used here. For a more
complete account of these methods, the reader is referred to the refs
32-35.

(i) First we characterized the native state of the protein by conducting
two native MD simulations (275 K, see below), using the averaged
NMR structure of Betanova37 as a starting point. By analyzing the
generated native trajectories we determined which residues were in
contact with probability higher than 56% (native contacts) or hydrogen
bonded with probability higher than 66% (native hydrogen bonds). Two
residues not adjacent in the sequence were considered to be in contact
or hydrogen bonded if the centers of geometry of their side chains
were within 6.5 Å (CR distance for gly) or if the distance between
their backbone hydrogen and oxygen atoms was within 2.5 Å. Native
contacts and native hydrogen bonds are essential for defining the native
fold. We identified 18 native contacts (see Table 1) and 7 native
hydrogen bonds.

(ii) Next we prepared the initial conditions for the sampling. This
was done by running four high-temperature unfolding trajectories and
partitioning the generated database of structures based on the number
of native contacts and radius of gyration. The total number of partitions
(bins) was 24. For each bin a hierarchical clustering was performed to
choose the representative structures that could serve as the initial
conditions for the sampling. Following the previous work on protein
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Figure 1. Minimized average NMR structure of protein Betanova from
ref 37. Key side chain interactions are shown explicitly.

Table 1. List of Native Contacts for Protein Betanova

no. 1st residue 2nd residue no. 1st residue 2nd residue

1 Gly2 Ser4 10 Gly8 Tyr10
2 Trp3 Tyr10 11 Lys9 Thr16
3 Trp3 Asn12 12 Lys9 Glu18
4 Trp3 Thr17 13 Tyr10 Thr17
5 Ser4 Gln6 14 Tyr10 Arg20
6 Ser4 Thr11 15 Thr11 Thr16
7 Val5 Gly8 16 Asn12 Gly14
8 Val5 Tyr10 17 Asn12 Thr16
9 Gln6 Thr11 18 Asn12 Thr17
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A32,33 and GB1,35 we employed the number of native contacts, the
number of native hydrogen bonds, and protein solvation energy as
descriptors for the protein structure and parameters for the dissimilarity
function. Thus, overall 26 protein descriptors (18 native contacts, 7
native hydrogen bonds, plus the solvation energy) were defined. Upon
the completion of clustering we obtained 74 cluster centers, which were
used as initial conditions for the sampling.

(iii) The initial conditions were resolvated and reequilibrated as
described at the end of this section. Molecular dynamics simulations
with a biased (umbrella) potential were performed for a duration of
300 ps to explore the configurational space in the vicinity of each initial
condition. The biasing potential was identical in form with that
employed by Sheinerman and Brooks.35 A force constant of 500 kcal/
mol was employed.

(iv) Finally, the sampling data were combined using the weighted
histogram analysis method (WHAM).38-40 This method provides a
robust estimate of the density of states projected onto specific reac-
tion coordinates (radius of gyration, number of native contacts,
etc.), as has been demonstrated in a number of biophysical appli-
cations.13,32-35,40

The molecular dynamics simulations were performed with the
CHARMM package using a parameter set TOPH19/PARAM19.41 The
protein was solvated with TIP3P water molecules42 in a truncated
octahedron constructed from a cubic box with an edge length of 56.57
Å. Corresponding periodic boundary conditions were employed. The
simulations were performed with a constant volume and constant solvent
density. The trajectories were integrated with a 2 fstime step using
the Verlet leap-frog algorithm.43 The covalent bonds between hydrogen
and heavy atoms were fixed with the SHAKE algorithm.44 The
nonbonded interactions were truncated at 11 Å with an electrostatic
shifting function and van der Waals switching, with the switch
beginning at 9 Å. The nonbonded interactions list was extended to 12
Å and updated every 20 steps. A constant temperature was main-
tained by reassigning atom velocities from a Gaussian distribution if
the average temperature drifted outside of a window(5 K. The
temperature was maintained at 275 K for the native and sampling
simulations. The length of the two native trajectories was 2.4 and 2.8
ns, respectively. The length of each of the 74 sampling runs was 100
ps equilibration plus 300 ps for data collection. Four unfolding
simulations were conducted at temperatures 350, 375, 385, and 400 K.
Their respective lengths were 2, 1, 1.5, and 2 ns. Thus, a total of≈45
ns of dynamics was used to construct the free energy landscape. In all
MD simulations the generated data were saved every 100 steps for
subsequent analysis. Calculations were done on the CRAY T3E
supercomputer at the San Diego Supercomputing Center. Sixty
picoseconds of molecular dynamics required≈1 CPU hour on 64
processors of the T3E.

The following procedure was employed to start each of the
simulations. First, the protein in its initial conformation was inserted
into a box containing 2942 water molecules. The molecules overlapping
with protein atoms were removed. A constant number of water
molecules, namely 2831, was maintained for each of the initial
conditions. This was done by varying the cutoff distance for the removal
of water between 2.3 and 2.7 Å. Next the protein/solvent system was
minimized for 200 steps with the steepest descent algorithm and then
equilibrated by running a 100 ps MD trajectory. Harmonic restraints
with a gradually decreasing force constant were applied to the protein
heavy atoms during the first 40 ps of the equilibration.

3. Results and Discussion

We start by analyzing the properties of the protein Betanova
derived from the native trajectories. In Figure 2 the backbone
root-mean-square deviation (rmsd) between the initial and
instantaneous protein conformations as a function of evolution
time along the trajectory is shown. We see that the backbone
rmsd reaches a value of 2-2.5 Å very quickly and stays at that
level throughout the simulations. This suggests that the native
state of Betanova is both stable and very mobile. The radius of
gyration is found to be≈6.8 Å. The average structure obtained
form the native trajectories is very similar to the initial
(experimental) one. This is based on the fact that the following
six contacts, Trp3-Tyr10, Trp3-Asn12, Trp3-Thr17, Val5-Tyr10,
Tyr10-Thr17, and Asn12-Thr17, are present in both initial and
average structures (see Table 1). These contacts constitute the
hydrophobic cluster, as was observed in the experimental studies
on this system.37

Next we consider the folding free energy landscape of
Betanova. The potential of mean force (PMF) as a function of
the fraction of native contacts,F, and radius of gyration,Rg, is
given in Figure 3. First we note that the basin of unfolded states,
which is located in the upper left corner of the PMF plot, is
relatively narrow along theF coordinate and extends from 16
to 11 Å along theRg coordinate. It contains a local minimum,
centered atF ≈ 0.15 andRg ≈ 12 Å. A typical conformation
adopted by the protein in this local minimum is depicted in
Figure 4. One can see that it is curved at two locations, which
roughly correspond to the turns in the native form, and lacks
any discernible secondary structure. Thus, the presence of these
metastable conformations suggests some intrinsic turn propensi-
ties exist in this sequence. To escape from this local minimum
to a basin of more compact (collapsed) states, the protein has
to overcome a small,≈1 kcal/mol, barrier.

The basin of collapsed states is wide in terms of both fraction
of native contacts and radius of gyration. The former varies
between 0.1 and 0.6 and the latter varies between 7 and 11 Å.
By contrast to the basin of unfolded states, the basin of collapsed
states is populated by protein conformations having various
elements of secondary structure. Initial secondary structure,
attained by the protein as it enters the basin of collapsed states,
involves formation of a native-like turn, Asn13-Gly14, and
orientation of theâ2 andâ3 strands in such a way that some of
their residues are in contact. No native hydrogen bonds are
formed betweenâ-strands 2 and 3 at this point. Further progress
along the folding coordinateF without significant compaction
brings the protein into a local free energy minimum atF ≈ 0.6
and Rg ≈ 9.5 Å. This evolution yields a well-formedâ2-â3
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Figure 2. The time evolution of the backbone root-mean-square
deviation relative to the initial configuration for the native simulation
at 275 K.
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hairpin having interstrand hydrogen bonds. We note in passing
that the Betanova sequence had been built on a stable hairpin,
containing most of the residues which constitute theâ2 andâ3
strands of protein Betanova. These are the very same strands
that participate in the early collapse of the protein. The analysis
of more compact structures populating the basin of collapsed
states reveals the following. Typically at smaller values ofF,
each structure has either one of the native turns and the native
contacts between correspondingâ-strands. At larger values of
F all structures contain both native turns, although only two
â-strands are aligned to form native contacts and hydrogen
bonds between each other, while the third one is frayed away.
In particular for small values ofF andRg, structures containing
the Asn7-Gly8 turn and corresponding native-like orientation
of â1 andâ2 strands dominate. At even larger values of folding
coordinate,F approaching 0.6, structures containing all three
â-strands in correct native-like orientation start to appear. This

signifies that the protein approaches a basin of native states.
Thus 60% of native contacts is necessary to achieve a stable
three-strandedâ-sheet conformation.

The global minimum on the folding free energy surface,
corresponding to the basin of native states of the protein, is
located in the lower right corner. The basin of native structures
is relatively narrow along theRg coordinate and begins atF )
0.6. There is not a significant barrier between the native basin
and the basin of collapsed structures, suggesting that the folding
of Betanova is likely to be diffusion controlled. It should be
emphasized here that at the transition point between the basins
of collapsed and native states the protein adopts native-like fold
and compactness.

From a large variety of structures populating the basin of
collapsed states in the PMF surface of Betanova, we conclude
that its folding occurs via multiple pathways, at least in the
thermodynamical sense. To be more quantitative, we plot in
Figure 5 the number of native contacts with given probability
of formation for different values of folding coordinateF. At
values ofF corresponding to the basin of collapsed states, we
observe a broad distribution of contacts with probability ranging
from 0.1 to 0.7. This suggests that the contacts are distributed
between various structures. By contrast, the distribution becomes
more localized at higher values of probability for values ofF
near the native state (F ) 0.7, see Figure 5), which indicates
the formation of a stable core.

In Figure 6 we present the cumulative probability,P(F*), for
the protein to occupy states with 1e F e F* :

where â ) 1/kBT is the Boltzmann factor andW(F) is the
potential of mean force (see Figure 3b). We see that the
accumulated population of protein Betanova in the native basin,
F > 0.6, is≈90%. This translates into≈1 kcal/mol stability of
the native state. As was mentioned in the Introduction, the
corresponding experimental estimate is 0.6-0.7 kcal/mol at 278
K. Thus we observe good agreement between our MD result
and the experimental estimates for Betanova stability.

Figure 3. (a) Potential of mean force as a function of radius of gyration,
Rg, and fraction of native contacts,F. The contours are drawn every
0.5 kcal/mol. (b) Potential of mean force as a function of fraction of
native contacts,F.

Figure 4. A typical conformation, adopted by the protein at the local
minimum with F ≈ 0.15 andRg ≈12 Å. Some of the specific side
chain interactions occurring for these conformations are shown in atomic
detail.

Figure 5. Number of native contacts having a given probability of
formation for various values of folding coordinateF: (a) F ) 0.7; (b)
F ) 0.6; (c) F ) 0.4; and (d)F ) 0.2.

P(F*) )
∫1

F*
d F exp(-âW(F))

∫1

0
d F exp(-âW(F))

(1)
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Turning to the issue of the role played by interstrand hydrogen
bonds in the folding ofâ-sheet proteins, we investigate the
folding free energy as a function of the total number of native
hydrogen bonds,Nhb, and fraction of native contacts,F (see
Figure 7a). First we note that the free energy surface has only
one basin centered aroundF ) 0.7. This basin corresponds to
the native state of the protein. In the native basinNhb varies
between 3 and 7, suggesting that hydrogen bonding may play
a role in stabilizing the protein native topology. We also see

that early in the folding the free energy is independent ofNhb

up to a value ofF ) 0.6. This suggests that hydrogen bonding
is not a driving force inâ-sheet protein folding. Our finding is
somewhat similar to that of Honig et al.,45 who showed that
the primary factor determining the stability ofâ-sheet proteins
is the van der Waals and hydrophobic interactions, while
electrostatic interactions including hydrogen bonding were found
to be destabilizing.

To better understand what is driving the folding of this
designedâ-sheet protein, and to establish a connection between
our results and those of Honig et al., we investigate the role of
solvent. We characterize the solvation of the “protein core” by
the number of water molecules,Nwat, inside of a sphere of radius
6 Å drawn around the center of mass of the protein. While such
a small protein really does not possess a well-defined buried
core in the native state, our geometric definition of the core
serves to deliniate the role of interactions with solvent during
folding. In the native stateNwat ) 5 ( 2 and it increases to 30
as the protein unfolds. The potential of mean force as a function
of Nwat andF is shown in Figure 7b. By contrast to the PMF in
Figure 3a, it has only one free energy minimum, which
corresponds to the native state of the protein, and no free energy
barriers. The lack of the minima corresponding to the initial
collapsed (F ≈ 0.15 andRg ≈ 12 Å) and partially folded (F ≈
0.6 andRg ≈ 9.5 Å) states suggests that there is no correlation
between the stabilization of those states and solvation. From
this and from our previous conclusion regarding the role of
hydrogen bonding, we suggest that the contacts between residue
side chains are responsible for the stability of the structures in
the local minima in Figure 7a and are driving the folding in
this protein.

4. Conclusions

We have examined the PMF surface for the folding of a
designed protein, Betanova, which has three-strandedâ-sheet
topology in the native state. By contrast with all-R and mixed
R/â protein systems, the folding of Betanova involves two-stage
collapse. The first collapse results in a variety of structures
which have between 10 and 60% of the native contacts. To enter
the native basin the protein needs to undergo a second collapse.
It also adopts a native-like fold and has≈60% of native contacts
at this transition point. The PMF surface does not exhibit a free
energy barrier between the basins of native structures and
collapsed states. The overall stability of Betanova is found to
be about 1 kcal/mol, which agrees well with the experimental
estimate. We also found that interstrand hydrogen bonds do not
assist the folding of Betanova, rather to a certain degree they
stabilize a native fold. Water is present in the protein core until
late in the folding and its expulsion from the protein interior
coincides with the formation of the tertiary structure.
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Figure 6. Cumulative probability to observe a protein conformation
along the folding coordinateF.

Figure 7. (a) Potential of mean force as a function of total number of
native hydrogen bonds,Nhb, and fraction of native contacts,F. (b)
Potential of mean force as a function of number of core water molecules,
Nwat, and fraction of native contacts,F. The contours are drawn every
0.5 kcal/mol.
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